RAG Decision Framework & Trade-offs Analysis
Decision Tree for RAG Architecture
1. Should You Use RAG? (vs Alternatives)
START: Do you need external/dynamic knowledge?
├─ NO → Use base LLM or fine-tuned model
└─ YES → Continue to RAG evaluation
├─ Is knowledge highly structured?
│ └─ YES → Consider Knowledge Graph + LLM
└─ NO → RAG is optimal choice
├─ Real-time updates needed?
│ ├─ YES → Dynamic RAG with API integration
│ └─ NO → Static RAG with periodic updates
└─ Multi-modal content?
├─ YES → Multi-modal RAG
└─ NO → Text-only RAG
2. RAG vs Alternative Approaches
Approach | Best For | Limitations | Cost Profile |
---|---|---|---|
Pure LLM | Creative tasks, general reasoning | Knowledge cutoff, hallucinations | Low operational cost |
Fine-tuning | Domain expertise, consistent style | Static knowledge, expensive updates | High training cost |
RAG | Dynamic knowledge, factual accuracy | Retrieval complexity, latency | Medium operational cost |
Knowledge Graph + LLM | Structured reasoning, relationships | Setup complexity, limited scope | High setup cost |
Architecture Trade-offs Matrix
Retrieval Strategy Comparison
Strategy | Precision | Recall | Latency | Complexity | Best Use Case |
---|---|---|---|---|---|
Semantic Only | Medium | High | Low | Low | General Q&A |
Keyword Only | High | Low | Very Low | Very Low | Exact matching |
Hybrid (Semantic + Keyword) | High | High | Medium | Medium | Most applications |
Multi-stage Retrieval | Very High | Medium | High | High | Critical accuracy needs |
Vector Database Trade-offs
Performance vs Cost Analysis
High Performance + High Cost:
- Pinecone: $70-200/month for 10M vectors
- Best for: Production, high-scale applications
Medium Performance + Medium Cost:
- Weaviate Cloud: $25-100/month
- Best for: Growing applications, good feature set
Low Cost + Adequate Performance:
- Chroma: $0 (self-hosted)
- Best for: Development, small-scale production
Scalability Decision Matrix
Vector Count | Recommended Solutions | Monthly Cost Estimate |
---|---|---|
< 1M vectors | Chroma, FAISS | $0-50 |
1M-10M vectors | Qdrant Cloud, Weaviate | $50-300 |
10M-100M vectors | Pinecone, Weaviate Enterprise | $300-2000 |
> 100M vectors | Custom distributed solution | $2000+ |
Chunking Strategy Decision Guide
Context-Aware Chunking Selection
def select_chunking_strategy(document_type: str, use_case: str) -> str:
"""문서 타입과 사용 사례에 따른 청킹 전략 선택"""
decision_matrix = {
('academic_paper', 'research'): 'semantic_chunking', # 섹션 단위
('technical_doc', 'qa'): 'fixed_size_overlap', # 일관된 크기
('conversation', 'chat'): 'turn_based_chunking', # 대화 턴 단위
('code', 'documentation'): 'function_based', # 함수/클래스 단위
('legal', 'compliance'): 'paragraph_chunking', # 단락 단위
('news', 'summarization'): 'sentence_clustering' # 의미 클러스터
}
return decision_matrix.get((document_type, use_case), 'fixed_size_overlap')
Chunk Size Impact Analysis
Chunk Size | Retrieval Precision | Context Completeness | Processing Cost | Best For |
---|---|---|---|---|
Small (100-300 tokens) | ★★★★★ | ★★☆☆☆ | ★★★★★ | Factual Q&A |
Medium (300-600 tokens) | ★★★★☆ | ★★★★☆ | ★★★☆☆ | General purpose |
Large (600-1000 tokens) | ★★☆☆☆ | ★★★★★ | ★★☆☆☆ | Complex reasoning |
Quality vs Performance Trade-offs
Latency Budget Allocation
Total Target Latency: 2000ms
├─ Query Processing: 50ms (2.5%)
├─ Embedding Generation: 100ms (5%)
├─ Vector Search: 200ms (10%)
├─ Document Retrieval: 150ms (7.5%)
├─ Context Preparation: 100ms (5%)
├─ LLM Generation: 1300ms (65%)
└─ Post-processing: 100ms (5%)
Quality Optimization Strategies
High-Accuracy Configuration (높은 정확도 우선)
config_high_accuracy = {
'retrieval': {
'method': 'hybrid_search',
'initial_k': 50,
'reranking': True,
'final_k': 10
},
'generation': {
'model': 'gpt-4-turbo',
'temperature': 0.1,
'max_tokens': 1000
},
'expected_latency': '5-8 seconds',
'cost_per_query': '$0.05-0.10'
}
Fast-Response Configuration (빠른 응답 우선)
config_fast_response = {
'retrieval': {
'method': 'semantic_only',
'k': 5,
'reranking': False
},
'generation': {
'model': 'gpt-3.5-turbo',
'temperature': 0.3,
'max_tokens': 500
},
'expected_latency': '1-2 seconds',
'cost_per_query': '$0.01-0.03'
}
Cost Optimization Framework
Cost Component Analysis
Monthly RAG Operation Costs (10K queries):
Embedding Generation:
- OpenAI: $13 (10K queries × $0.0013/query)
- Local model: $0 (hardware amortized)
Vector Database:
- Pinecone: $70 (starter plan)
- Chroma: $0 (self-hosted)
LLM Generation:
- GPT-4: $300-600 (depends on context length)
- GPT-3.5: $60-120
- Local LLM: $0 (hardware amortized)
Infrastructure:
- Cloud hosting: $50-200
- Self-hosted: $0-50
Total Range: $130-870/month
Cost Reduction Strategies
1. Query Optimization (20-40% cost reduction)
class CostOptimizedRAG:
def __init__(self):
self.query_cache = TTLCache(maxsize=10000, ttl=3600) # 1시간 캐시
self.embedding_cache = LRUCache(maxsize=50000)
def smart_retrieval(self, query: str):
# 1. 캐시된 쿼리 확인
if query in self.query_cache:
return self.query_cache[query]
# 2. 유사 쿼리 검색 (90% 이상 유사도)
similar_cached = self.find_similar_cached_query(query, threshold=0.9)
if similar_cached:
return self.query_cache[similar_cached]
# 3. 새로운 검색 수행
results = self.perform_retrieval(query)
self.query_cache[query] = results
return results
2. Model Selection Strategy
def select_model_by_complexity(query: str, context: str) -> str:
"""쿼리 복잡도에 따른 모델 선택으로 비용 최적화"""
complexity_score = calculate_complexity(query, context)
if complexity_score < 0.3:
return 'gpt-3.5-turbo' # 간단한 쿼리
elif complexity_score < 0.7:
return 'gpt-4' # 중간 복잡도
else:
return 'gpt-4-turbo' # 고도의 추론 필요