Skip to main content

RAG Decision Framework & Trade-offs Analysis

Decision Tree for RAG Architecture

1. Should You Use RAG? (vs Alternatives)

START: Do you need external/dynamic knowledge?
├─ NO → Use base LLM or fine-tuned model
└─ YES → Continue to RAG evaluation
├─ Is knowledge highly structured?
│ └─ YES → Consider Knowledge Graph + LLM
└─ NO → RAG is optimal choice
├─ Real-time updates needed?
│ ├─ YES → Dynamic RAG with API integration
│ └─ NO → Static RAG with periodic updates
└─ Multi-modal content?
├─ YES → Multi-modal RAG
└─ NO → Text-only RAG

2. RAG vs Alternative Approaches

ApproachBest ForLimitationsCost Profile
Pure LLMCreative tasks, general reasoningKnowledge cutoff, hallucinationsLow operational cost
Fine-tuningDomain expertise, consistent styleStatic knowledge, expensive updatesHigh training cost
RAGDynamic knowledge, factual accuracyRetrieval complexity, latencyMedium operational cost
Knowledge Graph + LLMStructured reasoning, relationshipsSetup complexity, limited scopeHigh setup cost

Architecture Trade-offs Matrix

Retrieval Strategy Comparison

StrategyPrecisionRecallLatencyComplexityBest Use Case
Semantic OnlyMediumHighLowLowGeneral Q&A
Keyword OnlyHighLowVery LowVery LowExact matching
Hybrid (Semantic + Keyword)HighHighMediumMediumMost applications
Multi-stage RetrievalVery HighMediumHighHighCritical accuracy needs

Vector Database Trade-offs

Performance vs Cost Analysis

High Performance + High Cost:
- Pinecone: $70-200/month for 10M vectors
- Best for: Production, high-scale applications

Medium Performance + Medium Cost:
- Weaviate Cloud: $25-100/month
- Best for: Growing applications, good feature set

Low Cost + Adequate Performance:
- Chroma: $0 (self-hosted)
- Best for: Development, small-scale production

Scalability Decision Matrix

Vector CountRecommended SolutionsMonthly Cost Estimate
< 1M vectorsChroma, FAISS$0-50
1M-10M vectorsQdrant Cloud, Weaviate$50-300
10M-100M vectorsPinecone, Weaviate Enterprise$300-2000
> 100M vectorsCustom distributed solution$2000+

Chunking Strategy Decision Guide

Context-Aware Chunking Selection

def select_chunking_strategy(document_type: str, use_case: str) -> str:
"""문서 타입과 사용 사례에 따른 청킹 전략 선택"""

decision_matrix = {
('academic_paper', 'research'): 'semantic_chunking', # 섹션 단위
('technical_doc', 'qa'): 'fixed_size_overlap', # 일관된 크기
('conversation', 'chat'): 'turn_based_chunking', # 대화 턴 단위
('code', 'documentation'): 'function_based', # 함수/클래스 단위
('legal', 'compliance'): 'paragraph_chunking', # 단락 단위
('news', 'summarization'): 'sentence_clustering' # 의미 클러스터
}

return decision_matrix.get((document_type, use_case), 'fixed_size_overlap')

Chunk Size Impact Analysis

Chunk SizeRetrieval PrecisionContext CompletenessProcessing CostBest For
Small (100-300 tokens)★★★★★★★☆☆☆★★★★★Factual Q&A
Medium (300-600 tokens)★★★★☆★★★★☆★★★☆☆General purpose
Large (600-1000 tokens)★★☆☆☆★★★★★★★☆☆☆Complex reasoning

Quality vs Performance Trade-offs

Latency Budget Allocation

Total Target Latency: 2000ms
├─ Query Processing: 50ms (2.5%)
├─ Embedding Generation: 100ms (5%)
├─ Vector Search: 200ms (10%)
├─ Document Retrieval: 150ms (7.5%)
├─ Context Preparation: 100ms (5%)
├─ LLM Generation: 1300ms (65%)
└─ Post-processing: 100ms (5%)

Quality Optimization Strategies

High-Accuracy Configuration (높은 정확도 우선)

config_high_accuracy = {
'retrieval': {
'method': 'hybrid_search',
'initial_k': 50,
'reranking': True,
'final_k': 10
},
'generation': {
'model': 'gpt-4-turbo',
'temperature': 0.1,
'max_tokens': 1000
},
'expected_latency': '5-8 seconds',
'cost_per_query': '$0.05-0.10'
}

Fast-Response Configuration (빠른 응답 우선)

config_fast_response = {
'retrieval': {
'method': 'semantic_only',
'k': 5,
'reranking': False
},
'generation': {
'model': 'gpt-3.5-turbo',
'temperature': 0.3,
'max_tokens': 500
},
'expected_latency': '1-2 seconds',
'cost_per_query': '$0.01-0.03'
}

Cost Optimization Framework

Cost Component Analysis

Monthly RAG Operation Costs (10K queries):

Embedding Generation:
- OpenAI: $13 (10K queries × $0.0013/query)
- Local model: $0 (hardware amortized)

Vector Database:
- Pinecone: $70 (starter plan)
- Chroma: $0 (self-hosted)

LLM Generation:
- GPT-4: $300-600 (depends on context length)
- GPT-3.5: $60-120
- Local LLM: $0 (hardware amortized)

Infrastructure:
- Cloud hosting: $50-200
- Self-hosted: $0-50

Total Range: $130-870/month

Cost Reduction Strategies

1. Query Optimization (20-40% cost reduction)

class CostOptimizedRAG:
def __init__(self):
self.query_cache = TTLCache(maxsize=10000, ttl=3600) # 1시간 캐시
self.embedding_cache = LRUCache(maxsize=50000)

def smart_retrieval(self, query: str):
# 1. 캐시된 쿼리 확인
if query in self.query_cache:
return self.query_cache[query]

# 2. 유사 쿼리 검색 (90% 이상 유사도)
similar_cached = self.find_similar_cached_query(query, threshold=0.9)
if similar_cached:
return self.query_cache[similar_cached]

# 3. 새로운 검색 수행
results = self.perform_retrieval(query)
self.query_cache[query] = results
return results

2. Model Selection Strategy

def select_model_by_complexity(query: str, context: str) -> str:
"""쿼리 복잡도에 따른 모델 선택으로 비용 최적화"""

complexity_score = calculate_complexity(query, context)

if complexity_score < 0.3:
return 'gpt-3.5-turbo' # 간단한 쿼리
elif complexity_score < 0.7:
return 'gpt-4' # 중간 복잡도
else:
return 'gpt-4-turbo' # 고도의 추론 필요

Scalability Planning

Growth Stage Recommendations

Stage 1: MVP (< 1K queries/day)

Architecture: Monolithic RAG
Vector DB: Chroma (local)
LLM: OpenAI API
Embedding: sentence-transformers (local)
Infrastructure: Single server
Monthly Cost: $50-100

Stage 2: Growth (1K-10K queries/day)

Architecture: Microservices
Vector DB: Qdrant Cloud
LLM: OpenAI API + caching
Embedding: OpenAI API
Infrastructure: Load balancer + 2-3 servers
Monthly Cost: $300-800

Stage 3: Scale (10K+ queries/day)

Architecture: Distributed RAG
Vector DB: Pinecone/Custom distributed
LLM: Multiple providers + routing
Embedding: Custom fine-tuned models
Infrastructure: Kubernetes cluster
Monthly Cost: $2000+

Performance Scaling Patterns

Horizontal Scaling Strategy

class DistributedRAG:
def __init__(self):
self.retrieval_cluster = RetrievalCluster([
'retrieval-node-1:8080',
'retrieval-node-2:8080',
'retrieval-node-3:8080'
])
self.generation_pool = GenerationPool([
'gpt-4-endpoint-1',
'gpt-4-endpoint-2',
'claude-endpoint-1'
])

async def distributed_query(self, query: str):
# 부하 분산된 검색
retrieval_results = await self.retrieval_cluster.search(
query,
strategy='round_robin'
)

# 모델 풀에서 최적 모델 선택
best_model = self.generation_pool.select_optimal(
context_length=len(retrieval_results),
query_complexity=self.assess_complexity(query)
)

response = await best_model.generate(query, retrieval_results)
return response

Monitoring & Optimization Decision Points

Key Metrics Thresholds

MetricGoodWarningCriticalAction Required
Retrieval Latency< 200ms200-500ms> 500msOptimize indexing
Generation Latency< 2s2-5s> 5sModel optimization
Retrieval Precision@5> 0.80.6-0.8< 0.6Improve embeddings
Answer Relevance> 0.850.7-0.85< 0.7Tune prompts
Cost per Query< $0.05$0.05-0.15> $0.15Cost optimization

Optimization Decision Tree

Performance Issue Detected
├─ High Latency?
│ ├─ Retrieval slow? → Optimize vector search
│ └─ Generation slow? → Reduce context/change model
├─ Poor Accuracy?
│ ├─ Bad retrieval? → Improve embeddings/chunking
│ └─ Bad generation? → Better prompts/model
└─ High Costs?
├─ Too many API calls? → Add caching
└─ Expensive model? → Smart model routing

Implementation Alternatives Analysis

Alternative 1: Simple Keyword-based RAG

장점 (Pros):

  • 구현 간단 (Easy implementation)
  • 낮은 지연시간 (Low latency)
  • 정확한 키워드 매칭 (Exact keyword matching)

단점 (Cons):

  • 의미적 검색 부족 (No semantic understanding)
  • 동의어 처리 불가 (Cannot handle synonyms)
  • 복잡한 질의 처리 한계 (Limited complex query handling)

Alternative 2: Knowledge Graph + LLM

장점 (Pros):

  • 구조화된 추론 (Structured reasoning)
  • 관계 기반 검색 (Relationship-based search)
  • 높은 정확도 (High precision)

단점 (Cons):

  • 복잡한 초기 설정 (Complex setup)
  • 지식 그래프 구축 비용 (KG construction cost)
  • 확장성 제한 (Scalability limitations)

Alternative 3: Fine-tuned Domain Model

장점 (Pros):

  • 도메인 특화 성능 (Domain-specific performance)
  • 외부 검색 불필요 (No external retrieval needed)
  • 일관된 응답 스타일 (Consistent response style)

단점 (Cons):

  • 정적 지식 (Static knowledge)
  • 높은 훈련 비용 (High training cost)
  • 업데이트 어려움 (Difficult to update)

기술 용어 사전 (Technical Terms for Children)

  • Trade-off (트레이드오프): 좋은 것을 얻기 위해 다른 것을 포기하는 것이에요. 예를 들어, 빠른 답변을 원하면 정확도를 조금 포기해야 해요.

  • Latency (지연시간): 질문을 하고 답변을 받기까지 걸리는 시간이에요. 마치 친구에게 말을 걸고 대답을 듣기까지의 시간과 같아요.

  • Scalability (확장성): 더 많은 사람들이 사용해도 잘 작동하는 능력이에요. 작은 놀이터에서 큰 놀이터로 바뀌어도 모든 아이들이 놀 수 있는 것과 같아요.

  • Precision (정밀도): 찾은 정보 중에서 정말 필요한 정보의 비율이에요. 사탕 10개 중에서 내가 좋아하는 사탕이 8개면 정밀도가 높은 거예요.

  • Caching (캐싱): 자주 사용하는 것들을 가까운 곳에 미리 저장해두는 것이에요. 자주 읽는 책을 책상 위에 두는 것과 같아요.

  • Load Balancing (부하 분산): 일이 너무 많아지면 여러 명이 나누어서 하는 것이에요. 청소를 혼자 하지 않고 친구들과 함께 나누어서 하는 것 같아요.

  • Vector Database (벡터 데이터베이스): 의미를 숫자로 바꿔서 저장하는 특별한 저장고예요. 비슷한 뜻의 글들을 빠르게 찾을 수 있어요.